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Double autoresonance in two-dimensional dynamical systems
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The phenomenon of double autoresonance in dynamical systems with two degrees of freedom is examined.
We analyze the motion of a particle in a two-dimensional centrally symmetric potential, subject to a homoge-
neous quasiperiodic external field of elliptical polarization. It is shown that if the particle has a sufficiently
small initial energy, a double resonance is established when the slowly varying driving frequency approaches
the linear resonance frequency. As the driving frequency is changed further, the double resonance is main-
tained, causing a continuous excitation of the oscillator. When nonlinearity becomes significant, the motion
transforms into nearly circular oscillations. The necessary conditions for the persistence of the autoresonance
are studied in detai[.S1063-651X%99)00705-9

PACS numbd(s): 05.45.Xt

[. INTRODUCTION terms are important simultaneously. The model problem is
the motion of a particle in a two-dimensional centrally sym-

The purpose of the presented work is to expldyeamic  metric potential, subject to an elliptically polarized homoge-
autoresonancgDAR) in integrable systems with two de- neous quasiperiodic external field. A physical example of
grees of freedon2D System)s Autoresonance is known as a this type may be the excitation of classical dipoles by a trans-
persisting phase locking in a nonlinear oscillator subject to ¥€rse quasimonochromatic electromagnetic field in a nonlin-
quasiperiodic perturbation. If the oscillator is initially in €ar medium. Furthermore, the multidimensional DAR prob-
resonance, adiabatic changes in the driver's frequency led@m is essential to the research of the ARWI effect in the
to self-adjustments of the oscillator energy and frequencygases where a reduction to a 1D dynamical problem cannot
such that resonance is maintained. In early studies, DAR wae used. Such may be the case of driven multicomponent
used in the context of relativistic particle accelerafier4]. ~ Waves or of driven waves described by partial differential
More recent research deals with excitation of at¢Bisdis- ~ €quations of thirdor highe) order.
sociation of moleculefs], and further exploration of particle ~ Our presentation will be as follows. In Sec. Il we present
acceleration[7,8]. These applicative studies were supple-2@ brief comparison between the single and double DAR, and
mented by research intended to broaden the understanding i Sec. lll we formulate our problem. In Secs. IV-VI we
the DAR phenomenon’ such as in the model of two Coupieareat the excitation process In three successive StageSZ the
Osci”ators1 where one is linear with a SIOle Varying fre- linear excitation Stage, the Weakly nonlinear excitation Stage,
quency[g] and in the modei Of three Weakiy interacting non- and the fu“y nonlinear (.EXCitation Stage. Fina“y, in Sec. VIl
linear oscillators whose parameters vary adiabaticdlly. ~ We present our conclusions.

All these problems were reduced to a one degree of freedom
(1D) problem via the single resonance approximation.

The study of DAR has provided a basis for the recently ~ !I- SINGLE VERSUS DOUBLE AUTORESONANCE
developed f_ield_ of research afitoresonant wave interaction A description of DAR in a 1D driven dynamical system
(ARWI), which is the wave analog of the DAR phenomenon.[5) can proceed from writing the system’s Hamiltonian in the
The effect is studied theoretically in the context of plasmasy,m,
wave excitation by laser radiatidi 1], and with regard to
excitation of solitons in a nonlinear medium by an external
pump wave[12]. The ARWI effect was also found imode H(l,0,t)=Hg(1)+V[I,0,®(1)], (h)
conversionof waves, i.e., the interaction of two waves
propagating in a weakly nonlinear inhomogeneous medium
[13,14]. These studies are based on the assumption of onaherel and @ are the canonical action-angle variables of the
dimensional inhomogeneity, and also reduce the problem tgnperturbed probleniHy(1) is the corresponding unper-

a 1D dynamical problem. A review of the studies of weakly turbed Hamiltoniafy while V[1, 6, ®(t)] is a time dependent
nonlinear ARWI was given in Ref15]. In the most recent perturbation ¥ <H;) assumed to be periodic with respect to
works [16], the theory of fully nonlinear multidimensional the phase variabled [V(I,0,®+27)=V(l,0,®)]. This
ARWI is developed by using the averaged variational prin-perturbation represents an external driving force having
ciple. adiabatically varyingfrequency»(t)=d®/dt. We expand

All the dynamical studies mentioned above, made use ofhe perturbation in Fourier series:
the single resonance approximation, and obtained a reduction
to a 1D dynamical problem. In the present work, we address
the problem of DAR .in 2D integrable syst_ems, where a V(|,0,¢):2 a ,(1)el(10+n®), )
double resonance exists, i.e., two resonating perturbative tn
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In order to study the resonance problem, we leave only @ance at some initial time, the system will stay in resonance
single term, say . (I)exfi(l,6+n;®)], in the expansion, for later times, as the actiorlg , self adjust to preserve the

assuming that the phase in the exponent in this term is nearhase locking with the driver. However, in contrast to the

stationary, i.e., case of one degre_e of freedom, ir! Ui hi_gh_er-dimens_ional
systemgy there exists anotheenericpossibility of having a
d(l,6+n,;D) double resonance in the system, i.e., for two incommensurate
— gt ~he)+nrt)~0, () triadsl,,m;,n; andl,,m,,n, to satisfy two resonance con-

ditions simultaneously,

wherew=dH;,/dl is the frequency of the unperturbed sys-
tem. Note that the resonance conditi@®) excludes other
resonances, sayQ(1)+n;v(t)~0, unlessl;/n; is a mul-
tiple of I, /n,. Typically, the only important resonant term in
the Hamiltonian is that with, ,n, having no common divid- ¢ some initial time. Then, if, at later times, the system con-
ers, since the coefficients of the terms with multiple phasegyes to maintain these two simultaneous resonance condi-
in the Fourier expansion fall off rapidly with the increase of jg5 despite the variation of the driving frequeneft), we
the multiplicity. All these arguments lead to the so calledgncounter thedouble DARiN the system. The dynamics in
single resonance approximatidsiamiltonian this case can be described by the effectieeible resonance

H(1L 6. =Ho(1) +A()cog 1,0+ n,d +p(1)], () ;irrglettr)t:lrat\)r;ﬂ\év:'eir.:'c)ne has two nearly stationary terms in

l101(11,15)+mMywy(lq,15)+np(t)~0,

low1(11,12)+Mywa(l4,15)+np(t)~0 (8

which, in our case, differs from that studied in the conven-

) ’ : ’ ) H(l,0,t)=Hy+Acogl,0,+my6,+n,®+

tional nonlinear resonance problefa7] by a slow time (1.6,9=Ho 161+ m 6,400+ q)
variation of the driving frequency(t). The nontrivial result +Bcogl,0;+my0,+n,d+p). 9

in this case is that if at some initial time, sky one starts in
the vicinity of the resonance, i.d o[l (ty)]+n v(ty)~0, HereA, B, g, andp are functions of; ,, and, as previously,
then, under certain conditions, the resonance is preserved &g assume that no one of the triddsm, ,n, andl,,m,,n,
later times despitethe time variation of the driving fre- has common dividers. Note that, in the single DAR in 2D
quency. In other words, the system is continuously phasg&ystems, different pairs of actions, can satisfy the reso-
locked to the driver despite variation of its parameters. Thigiance condition at a given time, so the actual realization
is the salient signature of the DAR in the 1D system. Sincedepends on the initial conditions. In contrast, in the double
only one term with nearly stationary pha@erresponding to DAR, the actiond ; , at any time are solely determined by
a single continuously satisfied resonance conditisteft in  the value of the driving frequency(t) at this time. The
the Hamiltonian, we refer to this case asiagle DAR. following sections are devoted to studying an example of the
Now, we generalize from a one degree of freedom probdouble DAR in a driven 2D centrally symmetrical oscillator
lem described above to a driven system with two degrees dfystem.
freedom(more than two degrees of freedom are treated simi-

larly). Consider a perturbed Hamiltonian of the form Ill. FORMULATION OF THE PROBLEM
H(l1,15,61,0,,0)=Hg(l1,1,)+V[I1,15,6;,6,,D(1)], The Hamiltonian of our problem is composed of the
(5 Hamiltonian of the unperturbed systdry and a small per-
turbationV:
where (,,6,) and (,,6,) are the two pairs of the canonical
action-angle variables of the unperturb@ategrable prob- H=Hy+V, (10
lem represented by, V is a small perturbation, an@ is
the phase of the driving force. It is also assumed that the V<H,, (13)

driving frequencyy(t)=d®/dt is a slowly varying function

of time. We again expany in Fourier series: where the unperturbed system is a particle in a centrally sym-

metric 2D potential well:

V[lIq,l5,81,0,,®(0)]= >, a mn(l1,1p)e!farmoztn®), 2 r2e?
I,m,n Hi=—+ —
0

(6) 2 2

and in studying a resonant problem discard all the terms ifrlerer is the radial coordinatey is the azimuthal coordinate,
the expansion, except those having almost stationary phas&(r) is the centrally symmetric potential, and the particle
factors. One may have a situation, where only one ptes¢  Mass is normalized to 1. It is assumed that for a sufficiently

its multiple is stationary, say fot=1;, m=m,, andn small amplitude, the potential can be expanded as

= nl: 2

wol ar
U(r)ET'f' T

+U(r). (12)

4

liwy(l.05) +Muas(l 1, 1) +nyw()~0,  (7) (13

wy {11,1)=0Hq/dl 4, being the two main frequencies of  All subsequent calculations are performed with the fol-
the unperturbed problem. In this case, if one starts in resdowing dimensionless time and radial variables:
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r t
r——, t—-—, (14
T (0] 23
20, , DOUBLE RESONANCE
wherep and 7 are the characteristic length scale and time ; ]
scale, respectively: 4
v 0
=\ [—, T1=—.
P |a o
Using the scaling14), expansion13) assumes the form @
Uir)= r? . ré 16 v 0
(N=5*,, (16) .
3 2
where the sign depends on the signaoHereafter we shall y 2 !
refer to the plus sign case only.

The perturbation is assumed to be generated by an exter-
nal uniform force field, having a quasiharmonic time depen- FIG. 1. Resonance lines in the,-w, plane for a fixed value of
dence, and an elliptic polarization in the oscillation plane: ». The numbers correspond to the harmonic indeThe double
. ~ ~ resonance established in the linear stage is shown by the arrow.
F=gxcos®(t)+eysind(t), e,e,<1. (17)
) S In the following sections we treat the excitation process as
Here® is the quasiperiodic phase, and we have chosem the; syccession of three stages. The initial stage is the linear
andy directions to be the normal directions of the elliptic gycitation stage, which is defined by the demand that the
polarization. The resulting perturbed part of the Hamiltonian,ygnlinear term in the potentill6) should be smaller than

is given in polar coordinates by the perturbatior(18), and, therefore,
r 13
V(T @)= 5[ (ex+e,)c0800~ D (1) F<exy- @
_ The second stage is the weakly nonlinear stage, which is
+(ex—ey)cod+ @ (1))]. (18 defined by the demand that the nonlinear term in the poten-

tial (16) should be smaller than the linear term in the poten-

We denote the driving frequency b
g fred il tial (16), yet larger than the perturbatid@@8), implying

v(t)=P(1), (19 sll<r<1, (23

and assume that starts far from 1(the linear resonance . . . L .
The final stage is the fully nonlinear stage, which is defined

frequency, and passes through 1 at a later time. ; :
Our problem is most conveniently treated in the canonicaPy e demand that the nonlinear term in the poteriia)
should be comparable or larger than the linear term in the

action-angle variables of the unperturbed problem ;
I1,15,0,,0, (see Appendix A 1, is associated with the ra- Potential(16); thus
dial oscillations(i.e., the oscillations irr) and 6, describes

the phase of these oscillations.is the angular momentum,

and ¢, describes the phase of the azimuthal motion in th, o hroblem the oscillator is initially at the linear excita-
X-y plane. The perturbation can be spectrally decomposed ip,, stage, i.e., inequaliti2?) is fulfilled.

terms of the action-angle variables yielditgee Appendix Y

B)

1=<r. (24)

IV. LINEAR EXCITATION STAGE

_extey - B We begin the process of particle excitation in the linear
T2 nzz_x 2n(11,12)c08N 0+ 6, = D(1)) stage, where the system can be described as two decoupled

. linear oscillators. The unperturbed linear Hamiltonian is

e,—¢ iven b
+2C2 S a1y 1p)coMn sy + b+ (1), gven by
n=-—w . .
Ho=3(X2+y2+x%+y?). (25)
(20) 0= 2 y y

L . . In Appendix C, we obtain, for the linear case,
This implies the existence of two families of resonance con- bp

ditions in our problem: Ho=2l,+1, (26)
w,=*v—nw,, |n|=0,1,2.... (21
2 1 | | aozm, a_1=— \/I—, (27)

We show these resonances as lines indhev, plane in Fig.
1 for a fixed value ofy. a,=0, n#0,—1,
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ear excitation stage is responsible for establishing a good

unperturbed Hamiltoniai26) is consistent with the elliptic phase match when nonlinearity appears. It can be shown that

oscillations, since for each azimuthal cycle there are exactlyn order that phase locking occurs prior to the weakly non-

two radial cycles, i.e., linear stage, one should demand that the initial driving fre-
quency obeys

dHg
=_"_»
“1 al, si{§<|v(to)—1|. (37
_ IHo — V. WEAKLY NONLINEAR EXCITATION STAGE
2

A. Approximate Hamiltonian
Thus, during the linear oscillation stage only four harmonic | this section we develop the approximate Hamiltonian

terms, with phaseg, = ® and6,— 6, + @, are presentin the i, the weakly nonlinear excitation stafgee inequality23)],
perturbation. When the driving frequency approaches the ling, terms of the action-angle variables. Using E¢E2) and

ear resonance frequency, two of these te(with phases (1) we write the unperturbed Hamiltonian in Cartesian co-
6,—® and 6,— 6,—P) become resonant simultaneously. dinates:

Hence, the system is placed in a double resonésee Fig.

1). In all subsequent analysis we neglect the nonresonant

qu Ho=1(x2+y2+ x2+y?) + 1 (x*+ y*+2x%y?).
terms, thus retaining

(38

Definition (23) of the weakly nonlinear stage implies

V= Syzsxmcowz_@(t)) 1] <1, (39)
I Sy;SX\/ECOS(t%— 0,— D(1)). (29 Consequently, one obtains the following approximations:
We further simplify the expression of the perturbation by %= \/EJF O™, a-=- \/EJFO(I ., o
introducing the generating function a,=0(1'%?), k+0,—1,
f(61,0,,11,1)=11(0,—6)+1,06,, (30) W ~1+0(1"). 1)

and transforming to the following action-angle variables:

The higher order terms in Eq&10) and(41) are obtained by

a perturbative treatment of the evolution equations, which we
do not include here. We use Eq®7), (B8), and (40) to
obtain approximate relations between the Cartesian coordi-
nates and the action-angle variables defined by(&%:

01: 01_ 02, (31)

0é= 02,

x=—/11cos;+ \15cos6;+0O(1'3?), (42)

Ié:|1+|2
y=l}sing]+\I,sin6y+0(1"3?).

Insertion of Egs(42) and (43) into Hamiltonian(38), gives

an expression which depends on the action and angle vari-
ables. By averaging over the angle variables we obtain the
approximate weakly nonlinear Hamiltonian:

43
The unperturbed linear Hamiltoniai26) and the perturba- “3

tion (29) in these variables are given by
Ho=11+15, (32

V= %\/qcoiai—q)(t))-l- %\/ECOieé_q)(t))a (33

1,2 1,2
Ho=11+15+ =+ ——+1115+0(1"3). 44
where 0 1 2 4 4 1'2 ( ) ( )
B17 8y & (34 B. Autoresonant evolution
gy=gytey. (35 We treat our problem in the rotating frame variables
The corresponding unperturbed frequencies are Wy=0;—D(t)=0,— 6,— (1), (45
wy,=1. (36) V,=0,—d(t)=6,— D(t), (46)
It was shown in Ref[13] that in a purely linear system Jie 1= 4
the difference between the phase of the oscillations and the 17 (47)
phase of the driving force diminishes as the linear resonance ,
frequency is approachgghase locking Therefore, the lin- Ja=1=11+15. (48)
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Taking the right hand side of Eq44) as the unperturbed 0.7 _
weakly nonlinear Hamiltonian and the right hand side of Eq. '
(33) as the perturbation, we have 0.6t
NERNE: & 05+
H=(J,+35)(1— (1) + = + =2+ J,0,+ —\J;cos¥, T
4 4 2 T 0.4l
>~ 04
QO
€2 % 0.3t
+7\/J_zcosllf2. (49) H03
[Ea}
o ] 0.2
The DAR solution is composed of a slowly varying qua-
siequilibrium term and a small oscillating term 6f(\z). 0.1}
We define the quasiequilibrium term as the stationary solu- — e~
tion.of the evolution equations derived from Hamiltonian 075 08 095 105 115 125
(49): DRIVING FREQUENCY, v
‘]l:%J‘]—lSin\pl' (50) FIG. 2. The numerically found energy vs the driving frequency

for the case of increasing driving frequen@urvea) and decreas-
ing driving frequency(curveb).

€2 .
‘JZZE\/ES'WZ’ (52) The resonance line in the) («) plane(the locus of reso-
nance points obtained by varying, is given by equating the
J, right hand side of Eq(52) to the right hand side of E@53).
V,=1-w(t)+ = +J2+

——=—cosV,, (52)  After some algebra, one obtains
4JJ_1 ' ’
3% sin(a—pB)
: J2 & 26 ° sinda (58)
\If2=1—v(t)+Jl+E+ mCOS\PZ, (53
2 We solve Eq(58) for a, and obtain the following asymptotic
where we treats(t) as a parameter fixed at a given time solutions:

moment. J<g2B
From Egs.(50) and (51) it follows that the stationary ' &
solutions for¥, , are either zero otr. By inspection of the . e2B<y, s=-1,
sign of the terms in the right hand side of E¢52) and(53), a= (59)
we conclude that these phases are . e2R<y, s=1.

o ™

INJE

r 7 v>0 (54) The upper case in E459) shows that in the linear excitation

1.2 0, v<O0. stage we have oscillations of the same polarization as the
perturbation. This can be verified by using the relations
Here the superscript denotes value in resonance.
At this stage, we introduce the following nomenclature: Yo+Xo=21Jcosa, Yo—Xo=2\Jsina (60)

Ji=Jsirfa, J,=Jcoa, obtained from Eqs(C6) and (C7). The two lower cases in
Eqg. (59) indicate that at the weak nonlinearity excitation
stage, the oscillations gradually become circular or linear,

77
J>0, 0<0‘<Z' (59) depending on the sign of. We examine these possibilities
by equating the sum of the right hand side of E&&) and
g,=esingB, e,=gC0SB, (56) (53) to zero:
T 3 e sin(a+pB)
>0, 0<,8<Z, V(t)—l—z\]'f's\/T_Jw. (61
s=cos¥", (57 Since fors=1 (decreasing driving frequengythe right hand

side of Eq.( 61) is positive, the resonance will break when
whereJ ande describe the amplitude of the nonlinear oscil- »(t) decreases below 1. On the other hands#—1 (in-
lations and the perturbation, respectively, ad=¥},.  creasing driving frequengythen a solution to Eq61) exists
The anglesy and B describe the polarization of the nonlinear for any value ofy(t) and thus the DAR can be preserved.
oscillations and the perturbation, respectively, such that zerDepicted in Fig. 2 is the dependence of the energy on the
angle corresponds to circular polarization, whité4 corre-  driving frequency, as obtained by solving the equations of
sponds to linear polarization in thedirection.sis =1 ac- motion numerically for both increasing and decreasing driv-
cording to the two cases in E(4). ing frequency. In these calculatioag=0.01,e,=0.03, and
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wheres¥,, 6¥,, 814, and 8J, are small deviations of the

1.2 : - L -
angles and actions from the quasiequilibrium solution. By
1.0 diagonalization of the system of equatio(®})—(67), one
- finds that the equilibrium is stable, and the frequencies of the
S 08 resonant oscillations are
D .
2 3 Jea
L 2
é 06 Q]_:E, QZZTJ:LM. (68)
0.4 The adiabaticity condition required for the preservation of
02! the autoresonance is given |
0 o V| <Qf,. (69)
-200 -100 0 100 200
TIME, t One can also show that
|v]<ely (70

FIG. 3. The radius as function of time and the orbit in they

plane(internal ploy for the case of increasing driving frequency. s a sufficient adiabaticity condition all through the weakly
] nonlinear excitation stage.

v==*=0.0035, and initially the oscillator is at rest. One can The amplitudes of the autoresonant oscillations, which we
see that when the driving frequency is increased the energyenote byAJ;, AJ,, AV, andA¥,, are obtained via the
steadily increases. In contrast, when the driving frequency ifollowing adiabatic relations:

decreased the energy ceases to increase in the vicinity of the

linear resonance frequency, consistently with the expected AWV AJ

resonance breaking. We henceforth treat the case in which K= 2 = const, (71
the driving frequency is increased. One can see numerical

evidence of the transition from elliptical to circular oscilla- AJ, Sﬁ

tions in Fig. 3, which depicts the radiusas a function of A_\Isz 27" k=1,2. (72

time and the orbit in the-y plane(internal ploj} for the case

£4=0.01,,=0.03, andv=0.0025. , : o "
The resonant actions are obtained by demanding the StIr_1 order that the DAR will persist, the following inequalities

tionarity of ', and ¥, i.e., by equating the right hand sides Fiust hold:
of Egs.(52) and (53) to zero. According to Eq(59), at the AJ<], (73)
weakly nonlinear excitation stage we may use the inequality
AV <, (74
Ji1<J,, (62

where we have omitted the index referring to the degree of
and obtain freedom. It turns out that the only amplitude whose growth

threatens the preservation of the DAR AsV,, which in-

2 creases according to

. B=20()-1). (63

€1

Jrl:[za— )

J
. o : AV, =v2l'y —. (75)
The stability of the quasiequilibrium solution can be stud- €1
ied by examining the oscillatory part of the DAR solution.

Linearizing the evolution equatiort§0)—(53), in the weakly Thus appropriate initial phase locking is required, in order

nonlinear excitation stage, one obtains that the DAR would be preserved throughout the weakly
nonlinear excitation stage. Figure 4 depicts the oscillations in

2 sirB ¥, obtained by solving the evolution equatio(ﬁO)—(SS)

6d1=~ 13 1) (64 numerically, for the casese,=0.01,6,=0.03, and »

=0.001. In this example the phase locking is broken when

& CoSf v(t)=1.56, due to the increase V.

8J,=— > NAE) % (65)
VI. FULLY NONLINEAR STAGE
3 A. Approximate Hamiltonian
1 o2 sig 6dy, (66) Next, we turn to the fully nonlinear excitation stafgee

inequality (24)]. Assuming that initially in this stage, the

particle performs nearly circular oscillations, i.e., that in-
SV = 8] +& 67) equality (62) is obeyed, we approximate the unperturbed
27010 o Hamiltonian by
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J3 ~
o H=—+U(rg) —Jov(t) + ro)—v(t))J
5.1 45 ng (ro) = Jov(t) + (w1 (rg) — v(1))Jq
5
L) | € &
> | +71Arcos\1'1+ ?Zrocosllfz. (82)
s 35, ]
w
E . ] In order to obtain the evolution equations, we use EG8—
K (80) and obtain the following relations:
E 2.5t
ol ﬁ:o
aJy
1.5 ‘ ’ ‘ ' ‘
06 08 10 12 14 16 arg 1
DRIVING FREQUENCY, v —_—=—,
&Jz \]é
FIG. 4. The mismatch obtained by solving E¢89)—(72) nu-
merically. OAT B 1
5 NN
Ho(J1,J2)=H(J1=0J2) + w1J;. (76)
dAT W]
The first term on the right hand side of H@6) is the energy =3, = —Ar ~—l, (83
of the circular motion, given bysee Eq(A1)] 9J2 w1J;
72 where here (--)'=4(...)/dry. Furthermore
2
Ho(J1=0J2)= —5 +U(ro), (77
O g T 0 dHo -  dHe I,
whererj is the equilibrium radius of the oscillations, which ! 0
obeysU,(ro) =0, and, thereforesee Eq(A3)] Thus the evolution equations of the fully nonlinear stage are
J3=r3U"(ro). (78) . &
2= 1oV (ro Jl:?lAr sinW, (85
The second term on the right hand side of EZf) is the
energy of the small radial oscillations, ang is the fre- . &x .
quency of these oscillations, given by Jp=5TosinYs, (86)
~ 3U'(rp)
— " — " - ~ &
01(rg)=\Ug¢(ro \/U (ro)+ o (79 V=0, v+ 2~1A cosV, (87)
w1 r

Note that according to Hamiltoniaf76), the oscillations in
V¥, andW¥, are decoupled. Furthermore, the oscillations in ¥ b 89)
=

¥, are linear. Consequently; is approximated by rS
_ w(rg)Ar? where we neglecte®(¢) terms in the last equation.
9= 2 ' (80) We obtain the quasiequilibrium DAR solution as the sta-

tionary solution of the evolution equatio85)—(88), where

where Ar is the small amplitude of the radial oscillations ¥(t) is regarded as a fixed parameter at a given time mo-
aroundr . ment. According to Eqs(85) and (86), the angles maintain

In the fully nonlinear stage we have the same two perturihe resonant values of the weakly nonlinear excitation stage
bative resonant terms as in the weakly nonlinear sfage  [see Eq(54)]. The radius of oscillations when in resonance,
Eq. (49)]. We may still use relation&7), which are accurate is obtained by the stationarity of , and Eq.(78):
for elliptic oscillations, and obtain approximations for the

spectral coefficients: U’ (ro)

ro

=, (89

ap=rg, a_;=-—Ar. (81
We define theeffective exponerdf the central potential by

B. Autoresonant evolution

According to Sec. IV A the fully nonlinear Hamiltonian n= ngl, (90)

may be written as U’
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so that, for a potential of the formk, n=k. One can deduce

from Eq.(89) that, ifn>2, i.e., when the potential is increas-
ing faster than the quadratic potential, an increase in the 0.67
driving frequency will cause an increase in the radius of 0
oscillations. Using Eq4.79) and(89), we find the following 5
useful relation: 04+

Z)l:\/n+2V. (91 g 03t
Finally, we obtain an expression for the amplitude of the % 02t
radial oscillations in the quasiequilibrium solution, through = K
the stationarity of¥;: 017 %\A

0.0L . ‘ ‘ e e
Arf— €1 . 92) 07 08 09 10 11 12 13 14 15
202 n+2(Jn+2-1) DRIVING FREQUENCY, v

Here we made use of Eg87) and(91). FIG. 5. The autoresonant evolution of the energy vs driving
Next, we examine the stability of the quasiequilibrium frequency, for the potentiall(r)=(r?/2)— (r*/4).
solution by linearizing the evolution equatio(&5)—(88):
cess differs from the plus sign case by the fact that the po-
53,=— iAr SV, (93) tential_possesses a separatrix. A r)u_merical calculation of the
2 evolution of the energy vs the driving frequency, until the
approach of the separatrix, is displayed in Fig. 5. In this

5 &2 calculation £,=0.01,¢,=0.03, andv=—0.002, and ini-
032= =5 TodW2, (94 tially the oscillator is in the quasiequilibrium. In Fig. 6 we
plot the radiusr as function of time and the corresponding
) e, orbit in the x-y plane (internal plo} for the same problem.
o¥ PN 6y, (95  One can see the autoresonant transition from elliptical to
w Al circular orbit followed by the escape from the potential, as
. ) one approaches the separatrix.
n_
=— ——458J,. 96
’ r(z) n+2°7 99 VIl. CONCLUSIONS
Here we used relation&r8), (80), (83), and (91), and ne- In the presented work, the phenomenon of double au-
glected some irrelevant small terms. Equati(@®—(96) de-  toresonance of a driven 2D oscillator, in a centrally symmet-
scribe two decoupled oscillations with frequencies ric potential was studied in detail. A uniform, quasiperiodic,
elliptically polarized, external field was used as a driver. It
n—-2\[ e, was shown that if initially the quartic term in the Hamil-

Q=(n+2-1)», Q,=

—r> (97)  tonian is smaller than the perturbation, a double resonance is
2r established when the driving frequency approaches the linear
resonance frequency. Using the action-angle representation,
the double resonance was decomposed into radial and azi-

n+2

where we used Eqg91) and (92). In contrast with the
weakly nonlinear excitation stagé€), is expected to de-
crease during the excitation, and so the adiabaticity condition
(69) becomes more restrictive. The amplitudes of the reso-
nant oscillations are obtained in the same manner as in the
weakly nonlinear staglsee Eqs(71) and(72)], whereby one

can show that

AV 32, (99

Therefore, the resonance in the radial oscillations will even-
tually be broken. Numerical calculations show that when the
resonance W, is broken, the resonance i, persists, and
thus the excitation continues.

We conclude with a numerical solution of the equations
of motion for the nonlinear potential (r)=(r2/2)— (r4/4), , ‘ _
which is the case of the minus sign of EG6). This poten- -300 -200 -100 O 100 200
tial differs from the case of the plus sign by the fact that the TIME, t
frequency of the nonlinear oscillations decreases with the
increase of the energy. Thus the DAR excitation is obtained FIG. 6. The radius as function of time and the orbit in they
by decreasing the driving frequency. Furthermore, the proplane(internal ploj for the potentialU (r)=(r?/2)— (r*/4).
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muthal resonances. Nonlinearity ensures that as the driving One can obtain an explicit expression for the orbit in the
frequency is varied, the resonance is maintained, thus caus-p, plane:
ing a continuous excitation of the oscillator. The action-angle

variables in this dynamic autoresonance solution comprise a pi
superposition of smooth quasiequilibrium parts and small os- Pr(Ho,Py,r) =% \/2Ho— r—Z—ZU(f), (A4)
cillations.

When the quartic term in the Hamiltonian becomes COMy, here the plus sign corresponds to the —r._ half of the

parable with the perturbation, the motion transforms 'ntooscillation, and the minus sign corresponds to the,,

nearly circular oscillations. A perturbative analysis, around — :
IR ) ’ o —Tmnip half of the oscillation. We use E@A4) to define the
the quasiequilibrium DAR solution, has shown the Stab'“tycanonical action variables

of the excitation process. As the excitation continues, the
resonant oscillations of the radial angle variable increase, 1
until the radial resonance is broken. Furthermore, the adia- |1(Ho,p¢)55 fﬁ pr(Ho,pg,r)dr, (A5)
baticity condition on the azimuthal resonance becomes more
restrictive as nonlinearity increases. 1

Additional analysis of the pr(_)blem when dissipation is 12(Py)=5—= ﬁ; p.de=p,, (AB)
present, and, when small deviations from central symmetry 2m
are included, will be published elsewhere. There are several . L I
other possible generalizations to this study. We have showWhere the integration Is performed along one OSC'"aF'O" of
that by applying a single frequency, homogeneous, drivingﬁnd.‘P’ respgcnvely, and we h_ave user_j the fapt thais a
field in the problem, a specific combination of two reso- y_cllc coor_dlnfate. Next, we write the mixed variables gener-
nances is established. It may be interesting to study in whaiting function:
manner a slowly varying, two frequency, perturbation deter- .
mines which resonances are established, and what form Off(l‘,ll;(p,lz)5|2g0+f
oscillations is obtained. Furthermore, one may attempt to r
extend the work to-dimensional systems. Finally, we men- (A7)
tion the possibility of studying the quantum analog of the
problem, thus making the analysis more relevant to micro
scopic oscillators.

pr(HO(IllIZ)IIZIr,)dr,y

mint'1,2

where here the integration is along the orbit in the,
plane. Next, we use the generating functi@v) to define
the corresponding angle variables
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APPENDIX A: ACTION-ANGLE VARIABLES 0,(11,15,0, gD)E&I_f:qwg(h l,,60,) (A9)
1 1 1 {9 2 1 1 1

The treatment of the DAR phenomenon is most conve-
niently described in terms of action-angle variables of thewhere
unperturbed problem. Since our unperturbed system has two
degrees of freedom and one cyclic coordinate, it is inte- _
grable. Hamiltoniar(12) is given in canonical momenta and Fin(12:12)
coordinates by

r(ly.02.01) ap,(14,1,,r'
112,01 9pe(ly,1 )dr’, (A10)
al,
andr(l4,l5,6;) in the right hand side of EqA10) is the
p? Pl periodic function of6,, obtained by inversion of EqAS).
Ho=%+ ?ﬂL u(r), (A1) Note that only positive values @, have been defined in Eq.
(A8). We can continuously extend the definition to negative

where p, and p, are the momenta conjugate toand ¢, values, by changing the sign of the integral in the generating

: . function (A7).
respectively, given b . L
pectively, gv y The dynamics of the unperturbed system is giventHoy
pr='r, p¢=r2<;o. (A2) =Hgy(l4,l5), yielding the following equations of motion:
Note thatp,, is the angular momentum of the particle, and is 1,=0, (A11)
an integral of motion. If trapped, the coordinate of the .
particle oscillates between two radij,, and r gy, in an 1,=0, (A12)
effective potential,
. AHg(l4,15)
p2 01= TR (A13)
Uer(r) = —5+U(r), (A3)
2r
. aHO(l 1> I 2)
, 0= wy=—"7"—"—. (Al4)
which depend on the value of the angular momentum. aly
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It is understood tha#; describes the radial oscillation in the
r-p, plane, and tha#,=0 corresponds to=r ., and 6,
=1 corresponds to=r .. 6> characterizes the azimuthal
oscillation in thex-y plane. One can show thgts a periodic
function of 6;, and that
g(|1,|2,k77)=O, (A15)
wherek is an integer. Hence, we conclude from E49) that

¢ follows 6, with a difference which oscillates with the
angle 8;. Whenr =r i, Or r =1 oy, 6 is equal toe.

APPENDIX B: SPECTRAL DECOMPOSITION
OF THE PERTURBATION

DOUBLE AUTORESONANCE IN TWO-DIMENSIONAL ...
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APPENDIX C: LINEAR PROBLEM IN ACTION-ANGLE
VARIABLES

The linear Hamiltonian is given bjsee Eq.(25)]

1. .
H0=§(x2+y2+x2+y2). (Cy

The orbits of the unperturbed system in tkg/ plane are
therefore

X(t) :XO Coit_to),

y(t)=ygsin(t—tg). (C2

~ We perform a spectral decomposition of the perturbation;ro trajectory is an ellipse, and we have chosenxthady
In terms of the action-angle variables of the unperturbed,yes to pe the normal directions of the ellipggis taken to

problem by[see Eq(18)]

11,1,,0
V=" I ot 0130, 00) - B(1)

+(ex—gy)cod0,—g(l1,15,0,) +D(1))]. (B1)

Taking into account the fact thatandg are periodic func-
tions of #,, we expand in a Fourier series:

o

r(13,02,60)e 9001200= 3 . (Iy,1,)e". (B2)

n=-—o

Using definitions(A8) and (A10) one can show that

r(ly,lz,00)=r(lq1,1,—6y), (B3)
g(ly,15,00)=—9g(l1,1,—61). (B4)

Hence it follows that
Im(a,)=0. (B5)

We insert Eq.(B2) in Eq. (B1), and obtain the desired
spectral decomposition

ey te *
== 2 ay(lyl)codnsy + - (1))
n=—x
Ey—E ~
+ X2 Y an(lq,1,)c0dn0,+ 0,4+ D(1)).
n=—w

(B6)

By using Eq.(B2), one can also obtain the useful relations

o

x= 2 an(ly,l,)co8nd;+ 6y),

n=-—

(B7)

o)

y= 2 an(ly,lo)sinndy+6y). (88)

be the time in which the particle is on the positivaxis. We
further assume, without loss of generality, that

0<Xy<Yp (C3
thus also requiring
0<ey <ey. (Co
Since wherr =r 5, 6,=0 and8,= ¢, we have
01(to) = 02(to) =0. (CH)

Explicit expressions for the action variables in the linear
case ardgsee definitiongA5) and (A6)]

_(YO_X0)2
Il_T’ (Co)
I2=XoYo- (C7
Similarly, we find
Ho=211+1,, (C8
01=2(t—1tp), (C9
62:t—t0. (C].O)

Insertion of Eqs(C9) and(C10) into Egs.(B7) and(B8),
yields expressions for the spectral coefficients:

YotXo —r
a0= 2 = |1+|2,
L Yoo
-1 2 1y

a,=0, n#0,—1. (C1y
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