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Double autoresonance in two-dimensional dynamical systems

U. Rokni and L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

~Received 23 October 1998!

The phenomenon of double autoresonance in dynamical systems with two degrees of freedom is examined.
We analyze the motion of a particle in a two-dimensional centrally symmetric potential, subject to a homoge-
neous quasiperiodic external field of elliptical polarization. It is shown that if the particle has a sufficiently
small initial energy, a double resonance is established when the slowly varying driving frequency approaches
the linear resonance frequency. As the driving frequency is changed further, the double resonance is main-
tained, causing a continuous excitation of the oscillator. When nonlinearity becomes significant, the motion
transforms into nearly circular oscillations. The necessary conditions for the persistence of the autoresonance
are studied in detail.@S1063-651X~99!00705-9#

PACS number~s!: 05.45.Xt
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I. INTRODUCTION

The purpose of the presented work is to exploredynamic
autoresonance~DAR! in integrable systems with two de
grees of freedom~2D systems!. Autoresonance is known as
persisting phase locking in a nonlinear oscillator subject t
quasiperiodic perturbation. If the oscillator is initially i
resonance, adiabatic changes in the driver’s frequency
to self-adjustments of the oscillator energy and freque
such that resonance is maintained. In early studies, DAR
used in the context of relativistic particle acceleration@1–4#.
More recent research deals with excitation of atoms@5#, dis-
sociation of molecules@6#, and further exploration of particle
acceleration@7,8#. These applicative studies were supp
mented by research intended to broaden the understandi
the DAR phenomenon, such as in the model of two coup
oscillators, where one is linear with a slowly varying fr
quency@9# and in the model of three weakly interacting no
linear oscillators whose parameters vary adiabatically@10#.
All these problems were reduced to a one degree of free
~1D! problem via the single resonance approximation.

The study of DAR has provided a basis for the recen
developed field of research ofautoresonant wave interactio
~ARWI!, which is the wave analog of the DAR phenomeno
The effect is studied theoretically in the context of plas
wave excitation by laser radiation@11#, and with regard to
excitation of solitons in a nonlinear medium by an exter
pump wave@12#. The ARWI effect was also found inmode
conversion of waves, i.e., the interaction of two wave
propagating in a weakly nonlinear inhomogeneous med
@13,14#. These studies are based on the assumption of
dimensional inhomogeneity, and also reduce the problem
a 1D dynamical problem. A review of the studies of weak
nonlinear ARWI was given in Ref.@15#. In the most recent
works @16#, the theory of fully nonlinear multidimensiona
ARWI is developed by using the averaged variational pr
ciple.

All the dynamical studies mentioned above, made use
the single resonance approximation, and obtained a reduc
to a 1D dynamical problem. In the present work, we addr
the problem of DAR in 2D integrable systems, where
double resonance exists, i.e., two resonating perturba
PRE 591063-651X/99/59~5!/5242~11!/$15.00
a

ad
y
as

-
of

d

m

y

.
a

l

m
ne
to

-

of
on
s

ve

terms are important simultaneously. The model problem
the motion of a particle in a two-dimensional centrally sym
metric potential, subject to an elliptically polarized homog
neous quasiperiodic external field. A physical example
this type may be the excitation of classical dipoles by a tra
verse quasimonochromatic electromagnetic field in a non
ear medium. Furthermore, the multidimensional DAR pro
lem is essential to the research of the ARWI effect in t
cases where a reduction to a 1D dynamical problem can
be used. Such may be the case of driven multicompon
waves or of driven waves described by partial different
equations of third~or higher! order.

Our presentation will be as follows. In Sec. II we prese
a brief comparison between the single and double DAR,
in Sec. III we formulate our problem. In Secs. IV–VI w
treat the excitation process in three successive stages
linear excitation stage, the weakly nonlinear excitation sta
and the fully nonlinear excitation stage. Finally, in Sec. V
we present our conclusions.

II. SINGLE VERSUS DOUBLE AUTORESONANCE

A description of DAR in a 1D driven dynamical syste
@5# can proceed from writing the system’s Hamiltonian in t
form

H~ I ,u,t !5H0~ I !1V@ I ,u,F~ t !#, ~1!

whereI andu are the canonical action-angle variables of t
unperturbed problem@H0(I ) is the corresponding unper
turbed Hamiltonian#, while V@ I ,u,F(t)# is a time dependen
perturbation (V!H0) assumed to be periodic with respect
the phase variableF @V(I ,u,F12p)5V(I ,u,F)#. This
perturbation represents an external driving force hav
adiabatically varyingfrequencyn(t)[dF/dt. We expand
the perturbation in Fourier series:

V~ I ,u,F!5(
l ,n

al ,n~ I !ei ~ lu1nF!. ~2!
5242 ©1999 The American Physical Society
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In order to study the resonance problem, we leave onl
single term, sayal 1 ,n1

(I )exp@i(l1u1n1F)#, in the expansion,
assuming that the phase in the exponent in this term is ne
stationary, i.e.,

d~ l 1u1n1F!

dt
' l 1v~ I !1n1n~ t !'0, ~3!

wherev[dH0 /dI is the frequency of the unperturbed sy
tem. Note that the resonance condition~3! excludes other
resonances, sayl 18V(I )1n18n(t)'0, unlessl 18/n18 is a mul-
tiple of l 1 /n1. Typically, the only important resonant term
the Hamiltonian is that withl 1 ,n1 having no common divid-
ers, since the coefficients of the terms with multiple pha
in the Fourier expansion fall off rapidly with the increase
the multiplicity. All these arguments lead to the so call
single resonance approximationHamiltonian

H~ I ,u,t !5H0~ I !1A~ I !cos@ l 1u1n1F1p~ I !#, ~4!

which, in our case, differs from that studied in the conve
tional nonlinear resonance problem@17# by a slow time
variation of the driving frequencyn(t). The nontrivial result
in this case is that if at some initial time, sayt0, one starts in
the vicinity of the resonance, i.e.,l 1v@ I (t0)#1n1n(t0)'0,
then, under certain conditions, the resonance is preserve
later times despite the time variation of the driving fre-
quency. In other words, the system is continuously ph
locked to the driver despite variation of its parameters. T
is the salient signature of the DAR in the 1D system. Sin
only one term with nearly stationary phase~corresponding to
a single continuously satisfied resonance condition! is left in
the Hamiltonian, we refer to this case as asingleDAR.

Now, we generalize from a one degree of freedom pr
lem described above to a driven system with two degree
freedom~more than two degrees of freedom are treated si
larly!. Consider a perturbed Hamiltonian of the form

H~ I 1 ,I 2 ,u1 ,u2 ,t !5H0~ I 1 ,I 2!1V@ I 1 ,I 2 ,u1 ,u2 ,F~ t !#,
~5!

where (I 1 ,u1) and (I 2 ,u2) are the two pairs of the canonica
action-angle variables of the unperturbed~integrable! prob-
lem represented byH0 , V is a small perturbation, andF is
the phase of the driving force. It is also assumed that
driving frequencyn(t)[dF/dt is a slowly varying function
of time. We again expandV in Fourier series:

V@ I 1 ,I 2 ,u1 ,u2 ,F~ t !#5 (
l ,m,n

al ,m,n~ I 1 ,I 2!ei ~ lu11mu21nF!,

~6!

and in studying a resonant problem discard all the term
the expansion, except those having almost stationary p
factors. One may have a situation, where only one phase~and
its multiples! is stationary, say forl 5 l 1 , m5m1, and n
5n1:

l 1v1~ I 1 ,I 2!1m1v2~ I 1 ,I 2!1n1n~ t !'0, ~7!

v1,2(I 1 ,I 2)[]H0 /]I 1,2 being the two main frequencies o
the unperturbed problem. In this case, if one starts in re
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nance at some initial time, the system will stay in resona
for later times, as the actionsI 1,2 self adjust to preserve th
phase locking with the driver. However, in contrast to t
case of one degree of freedom, in 2D~or higher-dimensional
systems!, there exists anothergenericpossibility of having a
double resonance in the system, i.e., for two incommensu
triads l 1 ,m1 ,n1 and l 2 ,m2 ,n2 to satisfy two resonance con
ditions simultaneously,

l 1v1~ I 1 ,I 2!1m1v2~ I 1 ,I 2!1n1n~ t !'0,

l 2v1~ I 1 ,I 2!1m2v2~ I 1 ,I 2!1n2n~ t !'0 ~8!

at some initial time. Then, if, at later times, the system co
tinues to maintain these two simultaneous resonance co
tions despite the variation of the driving frequencyn(t), we
encounter thedouble DARin the system. The dynamics i
this case can be described by the effectivedouble resonance
Hamiltonian, where one has two nearly stationary terms
the perturbation, i.e.,

H~ I ,u,t !5H01A cos~ l 1u11m1u21n1F1q!

1B cos~ l 2u11m2u21n2F1p!. ~9!

HereA, B, q, andp are functions ofI 1,2, and, as previously,
we assume that no one of the triadsl 1 ,m1 ,n1 and l 2 ,m2 ,n2
has common dividers. Note that, in the single DAR in 2
systems, different pairs of actionsI 1,2 can satisfy the reso
nance condition at a given time, so the actual realizat
depends on the initial conditions. In contrast, in the dou
DAR, the actionsI 1,2 at any time are solely determined b
the value of the driving frequencyn(t) at this time. The
following sections are devoted to studying an example of
double DAR in a driven 2D centrally symmetrical oscillat
system.

III. FORMULATION OF THE PROBLEM

The Hamiltonian of our problem is composed of th
Hamiltonian of the unperturbed systemH0 and a small per-
turbationV:

H5H01V, ~10!

V!H0, ~11!

where the unperturbed system is a particle in a centrally s
metric 2D potential well:

H05
ṙ 2

2
1

r 2ẇ2

2
1U~r !. ~12!

Herer is the radial coordinate,w is the azimuthal coordinate
U(r ) is the centrally symmetric potential, and the partic
mass is normalized to 1. It is assumed that for a sufficien
small amplitude, the potential can be expanded as

U~r !>
v0r 2

2
1

ar4

4
. ~13!

All subsequent calculations are performed with the f
lowing dimensionless time and radial variables:
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r→
r

r
, t→

t

t
, ~14!

wherer and t are the characteristic length scale and tim
scale, respectively:

r5Av0

uau
, t5

1

v0
. ~15!

Using the scaling~14!, expansion~13! assumes the form

U~r !>
r 2

2
6

r 4

4
, ~16!

where the sign depends on the sign ofa. Hereafter we shall
refer to the plus sign case only.

The perturbation is assumed to be generated by an e
nal uniform force field, having a quasiharmonic time depe
dence, and an elliptic polarization in the oscillation plane

FW 5«xx̂ cosF~ t !1«yŷ sinF~ t !, «x ,«y!1. ~17!

HereF is the quasiperiodic phase, and we have chosen tx
and y directions to be the normal directions of the ellipt
polarization. The resulting perturbed part of the Hamiltoni
is given in polar coordinates by

V~r ,w,t !5
r

2
@~«x1«y!cos„w2F~ t !…

1~«x2«y!cos„w1F~ t !…#. ~18!

We denote the driving frequency by

n~ t ![Ḟ~ t !, ~19!

and assume thatn starts far from 1~the linear resonance
frequency!, and passes through 1 at a later time.

Our problem is most conveniently treated in the canon
action-angle variables of the unperturbed probl
I 1 ,I 2 ,u1 ,u2 ~see Appendix A!. I 1 is associated with the ra
dial oscillations~i.e., the oscillations inr ) andu1 describes
the phase of these oscillations.I 2 is the angular momentum
and u2 describes the phase of the azimuthal motion in
x-y plane. The perturbation can be spectrally decompose
terms of the action-angle variables yielding~see Appendix
B!

V5
«x1«y

2 (
n52`

`

an~ I 1 ,I 2!cos„nu11u22F~ t !…

1
«x2«y

2 (
n52`

`

an~ I 1 ,I 2!cos„nu11u21F~ t !….

~20!

This implies the existence of two families of resonance c
ditions in our problem:

v256n2nv1 , unu50,1,2, . . . . ~21!

We show these resonances as lines in thev1-v2 plane in Fig.
1 for a fixed value ofn.
er-
-

,

l

e
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In the following sections we treat the excitation process
a succession of three stages. The initial stage is the lin
excitation stage, which is defined by the demand that
nonlinear term in the potential~16! should be smaller than
the perturbation~18!, and, therefore,

r !«x,y
1/3 . ~22!

The second stage is the weakly nonlinear stage, whic
defined by the demand that the nonlinear term in the po
tial ~16! should be smaller than the linear term in the pote
tial ~16!, yet larger than the perturbation~18!, implying

«x,y
1/3!r !1. ~23!

The final stage is the fully nonlinear stage, which is defin
by the demand that the nonlinear term in the potential~16!
should be comparable or larger than the linear term in
potential~16!; thus

1&r . ~24!

In our problem the oscillator is initially at the linear excita
tion stage, i.e., inequality~22! is fulfilled.

IV. LINEAR EXCITATION STAGE

We begin the process of particle excitation in the line
stage, where the system can be described as two decou
linear oscillators. The unperturbed linear Hamiltonian
given by

H05 1
2 ~ ẋ21 ẏ21x21y2!. ~25!

In Appendix C, we obtain, for the linear case,

H052I 11I 2 , ~26!

a05AI 11I 2, a2152AI 1, ~27!

an50, nÞ0,21,

FIG. 1. Resonance lines in thev1-v2 plane for a fixed value of
n. The numbers correspond to the harmonic indexn. The double
resonance established in the linear stage is shown by the arro
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wherean are the spectral coefficients of expansion~20!. The
unperturbed Hamiltonian~26! is consistent with the elliptic
oscillations, since for each azimuthal cycle there are exa
two radial cycles, i.e.,

v15
]H0

]I 1
52,

v25
]H0

]I 2
51. ~28!

Thus, during the linear oscillation stage only four harmo
terms, with phasesu26F andu22u16F, are present in the
perturbation. When the driving frequency approaches the
ear resonance frequency, two of these terms~with phases
u22F and u22u12F) become resonant simultaneous
Hence, the system is placed in a double resonance~see Fig.
1!. In all subsequent analysis we neglect the nonreson
terms, thus retaining

V5
«y1«x

2
AI 11I 2cos„u22F~ t !…

1
«y2«x

2
AI 1cos„u12u22F~ t !…. ~29!

We further simplify the expression of the perturbation
introducing the generating function

f ~u1 ,u2 ,I 18 ,I 28![I 18~u12u2!1I 28u2 , ~30!

and transforming to the following action-angle variables:

u185u12u2 , ~31!

u285u2 ,

I 185I 1 ,

I 285I 11I 2 .

The unperturbed linear Hamiltonian~26! and the perturba-
tion ~29! in these variables are given by

H05I 181I 28 , ~32!

V5
«1

2
AI 18cos„u182F~ t !…1

«2

2
AI 28cos„u282F~ t !…, ~33!

where

«15«y2«x , ~34!

«25«y1«x . ~35!

The corresponding unperturbed frequencies are

v1,28 51. ~36!

It was shown in Ref.@13# that in a purely linear system
the difference between the phase of the oscillations and
phase of the driving force diminishes as the linear resona
frequency is approached~phase locking!. Therefore, the lin-
ly

c
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ear excitation stage is responsible for establishing a g
phase match when nonlinearity appears. It can be shown
in order that phase locking occurs prior to the weakly no
linear stage, one should demand that the initial driving f
quency obeys

«x,y
4/3!un~ t0!21u. ~37!

V. WEAKLY NONLINEAR EXCITATION STAGE

A. Approximate Hamiltonian

In this section we develop the approximate Hamiltoni
in the weakly nonlinear excitation stage@see inequality~23!#,
in terms of the action-angle variables. Using Eqs.~12! and
~16!, we write the unperturbed Hamiltonian in Cartesian c
ordinates:

H05 1
2 ~ ẋ21 ẏ21x21y2!1 1

4 ~x41y412x2y2!. ~38!

Definition ~23! of the weakly nonlinear stage implies

I 1,28 !1. ~39!

Consequently, one obtains the following approximations:

a05AI 281O~ I 83/2!, a2152AI 181O~ I 83/2!, ~40!

ak5O~ I 83/2!, kÞ0,21,

v1,28 511O~ I 8!. ~41!

The higher order terms in Eqs.~40! and~41! are obtained by
a perturbative treatment of the evolution equations, which
do not include here. We use Eqs.~B7!, ~B8!, and ~40! to
obtain approximate relations between the Cartesian coo
nates and the action-angle variables defined by Eq.~31!:

x52AI 18cosu181AI 28cosu281O~ I 83/2!, ~42!

y5AI 18sinu181AI 28sinu281O~ I 83/2!. ~43!

Insertion of Eqs.~42! and ~43! into Hamiltonian~38!, gives
an expression which depends on the action and angle v
ables. By averaging over the angle variables we obtain
approximate weakly nonlinear Hamiltonian:

H05I 181I 281
I 1
82

4
1

I 2
82

4
1I 18I 281O~ I 83!. ~44!

B. Autoresonant evolution

We treat our problem in the rotating frame variables

C15u182F~ t !5u12u22F~ t !, ~45!

C25u282F~ t !5u22F~ t !, ~46!

J15I 185I 1 , ~47!

J25I 285I 11I 2 . ~48!
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Taking the right hand side of Eq.~44! as the unperturbed
weakly nonlinear Hamiltonian and the right hand side of E
~33! as the perturbation, we have

H>~J11J2!„12n~ t !…1
J1

2

4
1

J2
2

4
1J1J21

«1

2
AJ1cosC1

1
«2

2
AJ2cosC2 . ~49!

The DAR solution is composed of a slowly varying qu
siequilibrium term and a small oscillating term ofO(A«).
We define the quasiequilibrium term as the stationary so
tion of the evolution equations derived from Hamiltonia
~49!:

J̇15
«1

2
AJ1sinC1 , ~50!

J̇25
«2

2
AJ2sinC2 , ~51!

Ċ1512n~ t !1
J1

2
1J21

«1

4AJ1

cosC1 , ~52!

Ċ2512n~ t !1J11
J2

2
1

«2

4AJ2

cosC2 , ~53!

where we treatn(t) as a parameter fixed at a given tim
moment.

From Eqs.~50! and ~51! it follows that the stationary
solutions forC1,2 are either zero orp. By inspection of the
sign of the terms in the right hand side of Eqs.~52! and~53!,
we conclude that these phases are

C1,2
r 5H p, ṅ.0

0, ṅ,0.
~54!

Here the superscriptr denotes value in resonance.
At this stage, we introduce the following nomenclature

J1
r 5J sin2a, J2

r 5J cos2a,

J.0, 0,a,
p

4
, ~55!

«15« sinb, «25« cosb, ~56!

«.0, 0,b,
p

4
,

s5cosC r , ~57!

whereJ and« describe the amplitude of the nonlinear osc
lations and the perturbation, respectively, andC r5C1,2

r .
The anglesa andb describe the polarization of the nonline
oscillations and the perturbation, respectively, such that z
angle corresponds to circular polarization, whilep/4 corre-
sponds to linear polarization in they direction.s is 61 ac-
cording to the two cases in Eq.~54!.
.

-

ro

The resonance line in the (J,a) plane~the locus of reso-
nance points obtained by varyingn), is given by equating the
right hand side of Eq.~52! to the right hand side of Eq.~53!.
After some algebra, one obtains

J3/2

2«
5s

sin~a2b!

sin 4a
. ~58!

We solve Eq.~58! for a, and obtain the following asymptotic
solutions:

a5H b, J!«2/3,

0, «2/3!J, s521,

p

4
, «2/3!J, s51.

~59!

The upper case in Eq.~59! shows that in the linear excitatio
stage we have oscillations of the same polarization as
perturbation. This can be verified by using the relations

y01x052AJcosa, y02x052AJsina ~60!

obtained from Eqs.~C6! and ~C7!. The two lower cases in
Eq. ~59! indicate that at the weak nonlinearity excitatio
stage, the oscillations gradually become circular or line
depending on the sign ofṅ. We examine these possibilitie
by equating the sum of the right hand side of Eqs.~52! and
~53! to zero:

n~ t !215
3

4
J1s

«

A2J

sin~a1b!

sin 2a
. ~61!

Since fors51 ~decreasing driving frequency!, the right hand
side of Eq.~ 61! is positive, the resonance will break whe
n(t) decreases below 1. On the other hand, ifs521 ~in-
creasing driving frequency!, then a solution to Eq.~61! exists
for any value ofn(t) and thus the DAR can be preserve
Depicted in Fig. 2 is the dependence of the energy on
driving frequency, as obtained by solving the equations
motion numerically for both increasing and decreasing dr
ing frequency. In these calculations«x50.01,«y50.03, and

FIG. 2. The numerically found energy vs the driving frequen
for the case of increasing driving frequency~curvea) and decreas-
ing driving frequency~curveb).
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ṅ560.0035, and initially the oscillator is at rest. One c
see that when the driving frequency is increased the en
steadily increases. In contrast, when the driving frequenc
decreased the energy ceases to increase in the vicinity o
linear resonance frequency, consistently with the expec
resonance breaking. We henceforth treat the case in w
the driving frequency is increased. One can see nume
evidence of the transition from elliptical to circular oscill
tions in Fig. 3, which depicts the radiusr as a function of
time and the orbit in thex-y plane~internal plot! for the case
«x50.01,«y50.03, andṅ50.0025.

The resonant actions are obtained by demanding the
tionarity of C1 andC2, i.e., by equating the right hand side
of Eqs. ~52! and ~53! to zero. According to Eq.~59!, at the
weakly nonlinear excitation stage we may use the inequa

J1!J2 , ~62!

and obtain

J1
r 5F «1

2„12n~ t !…G
2

, J2
r 52„n~ t !21…. ~63!

The stability of the quasiequilibrium solution can be stu
ied by examining the oscillatory part of the DAR solutio
Linearizing the evolution equations~50!–~53!, in the weakly
nonlinear excitation stage, one obtains

d J̇152
«2 sin2b

4J
dC1 , ~64!

d J̇252
« cosb

2
AJdC2 , ~65!

dĊ15
J3

«2 sin2b
dJ1 , ~66!

dĊ25dJ11
dJ2

2
, ~67!

FIG. 3. The radiusr as function of time and the orbit in thex-y
plane~internal plot! for the case of increasing driving frequency.
gy
is
the
d

ch
al

ta-

ty

-

wheredC1 , dC2 , dJ1, anddJ2 are small deviations of the
angles and actions from the quasiequilibrium solution.
diagonalization of the system of equations~64!–~67!, one
finds that the equilibrium is stable, and the frequencies of
resonant oscillations are

V15
J

2
, V25

A«2

2
J1/4. ~68!

The adiabaticity condition required for the preservation
the autoresonance is given by@5#

uṅu!V1,2
2 . ~69!

One can also show that

uṅu!«x,y
4/3 ~70!

is a sufficient adiabaticity condition all through the weak
nonlinear excitation stage.

The amplitudes of the autoresonant oscillations, which
denote byDJ1 , DJ2 , DC1, andDC2, are obtained via the
following adiabatic relations:

Gk5
DCkDJk

2
5const, ~71!

DJk

DCk
5

«k
2

2J2
, k51,2. ~72!

In order that the DAR will persist, the following inequalitie
must hold:

DJ!J, ~73!

DC,p, ~74!

where we have omitted the index referring to the degree
freedom. It turns out that the only amplitude whose grow
threatens the preservation of the DAR isDC1, which in-
creases according to

DC15A2G1

J

«1
. ~75!

Thus appropriate initial phase locking is required, in ord
that the DAR would be preserved throughout the wea
nonlinear excitation stage. Figure 4 depicts the oscillation
C1 obtained by solving the evolution equations~50!–~53!

numerically, for the cases«x50.01,«y50.03, and ṅ
50.001. In this example the phase locking is broken wh
n(t)51.56, due to the increase inDC1.

VI. FULLY NONLINEAR STAGE

A. Approximate Hamiltonian

Next, we turn to the fully nonlinear excitation stage@see
inequality ~24!#. Assuming that initially in this stage, th
particle performs nearly circular oscillations, i.e., that i
equality ~62! is obeyed, we approximate the unperturb
Hamiltonian by
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H0~J1 ,J2!>H0~J150,J2!1ṽ1J1 . ~76!

The first term on the right hand side of Eq.~76! is the energy
of the circular motion, given by@see Eq.~A1!#

H0~J150,J2!5
J2

2

2r 0
2

1U~r 0!, ~77!

wherer 0 is the equilibrium radius of the oscillations, whic
obeysUeff8 (r 0)50, and, therefore,@see Eq.~A3!#

J2
25r 0

3U8~r 0!. ~78!

The second term on the right hand side of Eq.~76! is the
energy of the small radial oscillations, andṽ1 is the fre-
quency of these oscillations, given by

ṽ1~r 0!5AUe f f9 ~r 0!5AU9~r 0!1
3U8~r 0!

r 0
. ~79!

Note that according to Hamiltonian~76!, the oscillations in
C1 and C2 are decoupled. Furthermore, the oscillations
C1 are linear. Consequently,J1 is approximated by

J1>
ṽ1~r 0!Dr 2

2
, ~80!

where Dr is the small amplitude of the radial oscillation
aroundr 0.

In the fully nonlinear stage we have the same two per
bative resonant terms as in the weakly nonlinear stage@see
Eq. ~49!#. We may still use relations~27!, which are accurate
for elliptic oscillations, and obtain approximations for th
spectral coefficients:

a0>r 0 , a21>2Dr . ~81!

B. Autoresonant evolution

According to Sec. IV A the fully nonlinear Hamiltonia
may be written as

FIG. 4. The mismatch obtained by solving Eqs.~69!–~72! nu-
merically.
r-

H>
J2

2

2r 0
2

1U~r 0!2J2n~ t !1„ṽ1~r 0!2n~ t !…J1

1
«1

2
Dr cosC11

«2

2
r 0 cosC2 . ~82!

In order to obtain the evolution equations, we use Eqs.~77!–
~80! and obtain the following relations:

]r 0

]J1
50,

]r 0

]J2
5

1

J28
,

]Dr

]J1
5

1

ṽ1Dr
,

]Dr

]J2
52Dr

ṽ18

ṽ1J28
, ~83!

where here (•••)8[]( . . . )/]r 0. Furthermore

]H0

]J1
5ṽ1 ,

]H0

]J2
5

J2

r 0
2

. ~84!

Thus the evolution equations of the fully nonlinear stage

J̇15
«1

2
Dr sinC1 , ~85!

J̇25
«2

2
r 0 sinC2 , ~86!

Ċ15ṽ12n1
«1

2ṽ1Dr
cosC1 , ~87!

Ċ25
J2

r 0
2

2n, ~88!

where we neglectedO(«) terms in the last equation.
We obtain the quasiequilibrium DAR solution as the s

tionary solution of the evolution equations~85!–~88!, where
n(t) is regarded as a fixed parameter at a given time m
ment. According to Eqs.~85! and ~86!, the angles maintain
the resonant values of the weakly nonlinear excitation st
@see Eq.~54!#. The radius of oscillations when in resonanc
is obtained by the stationarity ofC2 and Eq.~78!:

AU8~r 0
r !

r 0
r

5n. ~89!

We define theeffective exponentof the central potential by

n5
rU 9

U8
11, ~90!
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so that, for a potential of the formr k, n5k. One can deduce
from Eq.~89! that, if n.2, i.e., when the potential is increa
ing faster than the quadratic potential, an increase in
driving frequency will cause an increase in the radius
oscillations. Using Eqs.~79! and~89!, we find the following
useful relation:

ṽ15An12n. ~91!

Finally, we obtain an expression for the amplitude of t
radial oscillations in the quasiequilibrium solution, throu
the stationarity ofC1:

Dr r5
«1

2n2An12~An1221!
. ~92!

Here we made use of Eqs.~87! and ~91!.
Next, we examine the stability of the quasiequilibriu

solution by linearizing the evolution equations~85!–~88!:

d J̇152
«1

2
DrdC1 , ~93!

d J̇252
«2

2
r 0dC2 , ~94!

dĊ15
«1

2ṽ1
2Dr 3

dJ1 , ~95!

dĊ25
1

r 0
2

n22

n12
dJ2 . ~96!

Here we used relations~78!, ~80!, ~83!, and ~91!, and ne-
glected some irrelevant small terms. Equations~93!–~96! de-
scribe two decoupled oscillations with frequencies

V15~An1221!n, V25AS n22

n12D S «2

2r 0
r D , ~97!

where we used Eqs.~91! and ~92!. In contrast with the
weakly nonlinear excitation stage,V2 is expected to de-
crease during the excitation, and so the adiabaticity condi
~69! becomes more restrictive. The amplitudes of the re
nant oscillations are obtained in the same manner as in
weakly nonlinear stage@see Eqs.~71! and~72!#, whereby one
can show that

DC1}n3/2. ~98!

Therefore, the resonance in the radial oscillations will ev
tually be broken. Numerical calculations show that when
resonance inC1 is broken, the resonance inC2 persists, and
thus the excitation continues.

We conclude with a numerical solution of the equatio
of motion for the nonlinear potentialU(r )5(r 2/2)2(r 4/4),
which is the case of the minus sign of Eq.~16!. This poten-
tial differs from the case of the plus sign by the fact that
frequency of the nonlinear oscillations decreases with
increase of the energy. Thus the DAR excitation is obtain
by decreasing the driving frequency. Furthermore, the p
e
f

n
-

he

-
e

s

e
e
d
-

cess differs from the plus sign case by the fact that the
tential possesses a separatrix. A numerical calculation of
evolution of the energy vs the driving frequency, until th
approach of the separatrix, is displayed in Fig. 5. In t
calculation «x50.01,«y50.03, and ṅ520.002, and ini-
tially the oscillator is in the quasiequilibrium. In Fig. 6 w
plot the radiusr as function of time and the correspondin
orbit in the x-y plane ~internal plot! for the same problem
One can see the autoresonant transition from elliptica
circular orbit followed by the escape from the potential,
one approaches the separatrix.

VII. CONCLUSIONS

In the presented work, the phenomenon of double
toresonance of a driven 2D oscillator, in a centrally symm
ric potential was studied in detail. A uniform, quasiperiod
elliptically polarized, external field was used as a driver.
was shown that if initially the quartic term in the Hami
tonian is smaller than the perturbation, a double resonanc
established when the driving frequency approaches the lin
resonance frequency. Using the action-angle representa
the double resonance was decomposed into radial and

FIG. 5. The autoresonant evolution of the energy vs driv
frequency, for the potentialU(r )5(r 2/2)2(r 4/4).

FIG. 6. The radiusr as function of time and the orbit in thex-y
plane~internal plot! for the potentialU(r )5(r 2/2)2(r 4/4).
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muthal resonances. Nonlinearity ensures that as the dri
frequency is varied, the resonance is maintained, thus c
ing a continuous excitation of the oscillator. The action-an
variables in this dynamic autoresonance solution compris
superposition of smooth quasiequilibrium parts and small
cillations.

When the quartic term in the Hamiltonian becomes co
parable with the perturbation, the motion transforms in
nearly circular oscillations. A perturbative analysis, arou
the quasiequilibrium DAR solution, has shown the stabil
of the excitation process. As the excitation continues,
resonant oscillations of the radial angle variable increa
until the radial resonance is broken. Furthermore, the a
baticity condition on the azimuthal resonance becomes m
restrictive as nonlinearity increases.

Additional analysis of the problem when dissipation
present, and, when small deviations from central symm
are included, will be published elsewhere. There are sev
other possible generalizations to this study. We have sh
that by applying a single frequency, homogeneous, driv
field in the problem, a specific combination of two res
nances is established. It may be interesting to study in w
manner a slowly varying, two frequency, perturbation det
mines which resonances are established, and what form
oscillations is obtained. Furthermore, one may attemp
extend the work ton-dimensional systems. Finally, we me
tion the possibility of studying the quantum analog of t
problem, thus making the analysis more relevant to mic
scopic oscillators.
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APPENDIX A: ACTION-ANGLE VARIABLES

The treatment of the DAR phenomenon is most con
niently described in terms of action-angle variables of
unperturbed problem. Since our unperturbed system has
degrees of freedom and one cyclic coordinate, it is in
grable. Hamiltonian~12! is given in canonical momenta an
coordinates by

H05
pr

2

2
1

pw
2

2r 2
1U~r !, ~A1!

where pr and pw are the momenta conjugate tor and w,
respectively, given by

pr5 ṙ , pw5r 2ẇ. ~A2!

Note thatpw is the angular momentum of the particle, and
an integral of motion. If trapped, ther coordinate of the
particle oscillates between two radiir min and r max, in an
effective potential,

Ueff~r !5
pw

2

2r 2
1U~r !, ~A3!

which depend on the value of the angular momentum.
ng
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One can obtain an explicit expression for the orbit in t
r -pr plane:

pr~H0 ,pw ,r !56A2H02
pw

2

r 2
22U~r !, ~A4!

where the plus sign corresponds to ther min→rmax half of the
oscillation, and the minus sign corresponds to ther max
→rmin half of the oscillation. We use Eq.~A4! to define the
canonical action variables

I 1~H0 ,pw![
1

2p R pr~H0 ,pw,r !dr, ~A5!

I 2~pw![
1

2p R pwdw5pw , ~A6!

where the integration is performed along one oscillation or
and w, respectively, and we have used the fact thatw is a
cyclic coordinate. Next, we write the mixed variables gen
ating function:

f ~r ,I 1 ;w,I 2![I 2w1E
r min~ I 1 ,I 2!

r

pr„H0~ I 1 ,I 2!,I 2 ,r 8…dr8,

~A7!

where here the integration is along the orbit in ther -pr
plane. Next, we use the generating function~A7! to define
the corresponding angle variables

u1~ I 1 ,I 2 ,r ![
] f

]I 1
5E

r min~ I 1 ,I 2!

r ]pr~ I 1 ,I 2 ,r 8!

]I 1
dr8,

~A8!

u2~ I 1 ,I 2 ,u1 ,w![
] f

]I 2
5w1g~ I 1 ,I 2 ,u1!, ~A9!

where

g~ I 1 ,I 2 ,u1![E
r min~ I 1 ,I 2!

r ~ I 1 ,I 2 ,u1! ]pr~ I 1 ,I 2 ,r 8!

]I 2
dr8, ~A10!

and r (I 1 ,I 2 ,u1) in the right hand side of Eq.~A10! is the
periodic function ofu1, obtained by inversion of Eq.~A8!.
Note that only positive values ofu1 have been defined in Eq
~A8!. We can continuously extend the definition to negat
values, by changing the sign of the integral in the genera
function ~A7!.

The dynamics of the unperturbed system is given byH
5H0(I 1 ,I 2), yielding the following equations of motion:

İ 150, ~A11!

İ 250, ~A12!

u̇15v15
]H0~ I 1 ,I 2!

]I 1
, ~A13!

u̇25v25
]H0~ I 1 ,I 2!

]I 2
. ~A14!
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It is understood thatu1 describes the radial oscillation in th
r -pr plane, and thatu150 corresponds tor 5r min and u1
5p corresponds tor 5r max. u2 characterizes the azimutha
oscillation in thex-y plane. One can show thatg is a periodic
function of u1, and that

g~ I 1 ,I 2 ,kp!50, ~A15!

wherek is an integer. Hence, we conclude from Eq.~A9! that
w follows u2 with a difference which oscillates with th
angleu1. Whenr 5r min or r 5r max, u2 is equal tow.

APPENDIX B: SPECTRAL DECOMPOSITION
OF THE PERTURBATION

We perform a spectral decomposition of the perturbati
in terms of the action-angle variables of the unperturb
problem by@see Eq.~18!#

V5
r ~ I 1 ,I 2 ,u1!

2
@~«x1«y!cos„u22g~ I 1 ,I 2 ,u1!2F~ t !…

1~«x2«y!cos„u22g~ I 1 ,I 2 ,u1!1F~ t !…#. ~B1!

Taking into account the fact thatr andg are periodic func-
tions of u1, we expand in a Fourier series:

r ~ I 1 ,I 2 ,u1!e2 ig~ I 1 ,I 2 ,u1!5 (
n52`

`

an~ I 1 ,I 2!einu1. ~B2!

Using definitions~A8! and ~A10! one can show that

r ~ I 1 ,I 2 ,u1!5r ~ I 1 ,I 2 ,2u1!, ~B3!

g~ I 1 ,I 2 ,u1!52g~ I 1 ,I 2 ,2u1!. ~B4!

Hence it follows that

Im~an!50. ~B5!

We insert Eq.~B2! in Eq. ~B1!, and obtain the desired
spectral decomposition

V5
«x1«y

2 (
n52`

`

an~ I 1 ,I 2!cos„nu11u22F~ t !…

1
«x2«y

2 (
n52`

`

an~ I 1 ,I 2!cos„nu11u21F~ t !….

~B6!

By using Eq.~B2!, one can also obtain the useful relation

x5 (
n52`

`

an~ I 1 ,I 2!cos~nu11u2!, ~B7!

y5 (
n52`

`

an~ I 1 ,I 2!sin~nu11u2!. ~B8!
,
d

APPENDIX C: LINEAR PROBLEM IN ACTION-ANGLE
VARIABLES

The linear Hamiltonian is given by@see Eq.~25!#

H05
1

2
~ ẋ21 ẏ21x21y2!. ~C1!

The orbits of the unperturbed system in thex-y plane are
therefore

x~ t !5x0 cos~ t2t0!,

y~ t !5y0 sin~ t2t0!. ~C2!

The trajectory is an ellipse, and we have chosen thex andy
axes to be the normal directions of the ellipse.t0 is taken to
be the time in which the particle is on the positivex axis. We
further assume, without loss of generality, that

0,x0,y0 ~C3!

thus also requiring

0,«x,«y . ~C4!

Since whenr 5r min , u150 andu25w, we have

u1~ t0!5u2~ t0!50. ~C5!

Explicit expressions for the action variables in the line
case are@see definitions~A5! and ~A6!#

I 15
~y02x0!2

4
, ~C6!

I 25x0y0 . ~C7!

Similarly, we find

H052I 11I 2 , ~C8!

u152~ t2t0!, ~C9!

u25t2t0 . ~C10!

Insertion of Eqs.~C9! and~C10! into Eqs.~B7! and~B8!,
yields expressions for the spectral coefficients:

a05
y01x0

2
5AI 11I 2,

a2152
y02x0

2
52AI 1,

an50, nÞ0,21. ~C11!
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